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Abstract 

Iridium complexes L,Ir(CO)X (L = PPh,, P(p-F&H,),, CO; X = Cl, I) and L,Ir(CO)X, (L = PPh,, P(p-FC,H,),; X = Cl, I) 
were allowed to react with CH,(CH,),CD,Li and CH,(CH,),CD,CH,Li to form the respective n-octyliridium complexes. 
Thermal decomposition of these complexes yielded solely D,C=CH(CH,),CHs and CHD,(CH,),CH, from the l,l-dide- 
uteriooctyliridium complexes and H,C=CD(CH&H, and CDH,CD,(CH,),CH, from the 2,2_dideuteriooctyliridium com- 
plexes. Thus, productive decomposition of the n-alkyliridium complexes occurred exclusively by a P-hydrogen elimination 
mechanism. This is in accord with the previously reported reaction of (PPh,),Ir(CO)Cl with CH,(CH,),CD,CH,Li [l] and 
demonstrates that changing the steric and electronic nature of the donor ligands on the iridium is insufficient to induce 
productive decomposition by a-hydrogen elimination. 
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1. Introduction 

Late transition metal-alkyl complexes bearing both 
(Y and /3-hydrogens frequently undergo hydrogen elimi- 
nation reactions to form olefinic products. This decom- 
position is generally believed to occur directly via p-hy- 
drogen elimination, although reports of a-hydrogen 
elimination followed by a 1,Zhydrogen shift have also 
appeared [2]. The products from (Y- and p-elimination 
are readily distinguishable in appropriately labeled 
complexes, however, in unlabeled complexes the prod- 
ucts are identical (Scheme 1). This potential for mis- 
identification of the decomposition mechanism in unla- 
beled reactions has prompted us to reexamine the 
thermal decomposition pathways occurring in a num- 
ber of late transition metal-alkyl complexes. 

o-Hydrogen elimination has been reported in the 
rearrangement and decomposition of several iridium 
complexes. Iridium-methyl complexes have been ob- 
served to undergo o-hydrogen elimination during both 
thermal and photolytic decomposition 131 and an irida- 
cyclohexadiene bearing only a vinylic hydrogen in the p 
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position was reported to undergo an o-hydrogen elimi- 
nation during rearrangement 141. Rapid a-hydrogen 
elimination and readdition followed by p-hydrogen 
elimination was also suggested to account for deu- 
terium incorporation into olefins produced from the 
reaction of alkenes with {IrD,(n*-02CCF3)[P(p-FC6- 
HJ) [5]. It should be noted, however, that the same 
product can be rationalized on the basis of o-hydrogen 
elimination followed by a 1,Zhydride shift. This report 
of o-hydrogen elimination in competition with p-hy- 
drogen elimination prompted us to further explore 
iridium-alkyl complexes in which both (Y- and p- 
eliminations are possible. 

Iridium-alkyl complexes bearing both CY- and p-hy- 
drogens are generally reported to decompose by the 
P-hydrogen elimination pathway [6]. However, few of 
these studies actually included deuterium labeling [7] 
to determine the origin of the eliminated hydrogen. 
One such labeling study was reported by Schwartz and 
Cannon [l], in which the decomposition of the 
octyliridium complex, (CH ,(CH ,),CD,CH ,)Ir(CO) 
(PPh,),, was clearly shown to proceed by P-hydrogen 
elimination. We have expanded on this original study 
by modifying the steric and electronic properties of the 
non-alkyl ligands in an attempt to induce cy-elimina- 
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tion. The original complex was also included as a 
baseline for comparison to the modified complexes. 
Both (Y- and P-labeled octyl ligands were examined. 

2. Results and discussion 

2.1. Preparation and thermolysis of iridium-octyl com- 
plexes 

The deuterated starting materials, l-bromo-l,l-di- 
deuteriooctane and l-bromo-2,2_dideuteriooctane, 
were synthesized with 91-96% and 82-90% label in- 
corporation (two deuteriums), respectively [8,9]. The 
octyllithium which was prepared from the bromide by 
standard procedures [lo] was contaminated with l-oc- 
tene, 2-octene and octane as a result of Wurtz-type 
elimination reactions [ll]. The presence of these 
byproducts necessitated isolation of the octyllithium 
prior to reaction with the iridium complexes. This 
purified octyllithium did not further decompose to 
olefinic products after 12 h in dry diethylether at either 
0°C or 25°C. Reaction of the octyllithium with atmos- 
pheric water did produce octane but no octenes. 

A series of related octyliridium complexes were ex- 
amined in which the donor ligands, halide ligands, and 
iridium oxidation states were varied. Iridium(I) com- 
plexes were of the type L,Ir(CO)X, where L = PPh,, 
X = Cl, I; and L = P(p-FCeH,), CO, X = Cl. Iridi- 
m&II) complexes L,Ir(CO)X, (L = PPh,, P(p-FC,- 
HJ, X = Cl; and L = PPh,, X = I> were also exam- 
ined. Replacing the chloride ligands with iodide had no 
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discernible effect on the reaction products. Synthesis of 
(CO),IrCl, was attempted both from the reaction of 
carbon monoxide with IrCl, and by chlorination of 
(CO),IrCl, but was unsuccessful [12]. 

Freshly prepared diethylether solutions of l,l-dide- 
uteriooctyllithium or 2,2-dideuteriooctyllithium were 
added to the appropriate iridium chloride complex 
suspended in diethylether. The resulting octyliridium 
complexes were soluble in diethylether and were de- 
composed by warming the solution. Following decom- 
position, which was accompanied by a color change, 
the volatile products were collected by vacuum transfer 
and analyzed by GCMS and ‘H and 2H NMR spec- 
troscopy. The 1,1-dideuteriooctyl ligand produced l,l- 
dideuterio-1-octene and l,l-dideuteriooctane, while the 
2,2_dideuteriooctyl ligand formed 2-deuterio-1-octene 
and 1,2,24rideuteriooctane (Table 1). These labeled 
products indicate that decomposition occurred via the 
P-hydrogen elimination pathway (Scheme 2). No prod- 
ucts were observed to result from a-hydrogen elimina- 
tion followed by a 1,2-hydrogen shift. (Nonproductive 
a-hydrogen elimination equilibria were not detectable 
by the labeling scheme used in these studies.) Neither 
2-octene nor hexadecane was observed from these re- 
actions [131. 

Table 1 
Volatile products isolated from the reaction of iridium complexes with dideuterium-labeled octyllithium 

Complex CH&l-Q$D,Li CH,(CH,),CD,CH,Li 

cH,(cH ,)scH3cD~ CH&H&CHD, CH,KH,),CD=CH, 
(%) (%) (%o) 

‘&(CH,),CD,CH,D 
(o/o) 

(PPh,),IdCO)Cl 51 49 44 56 
(PPh,),IdCON 32 68 
tP(p-FC,HJlJdCOD 55 45 34 66 
Ir(CO),CI 46 54 
(PPh,)21dCO)Cl, 36 64 42 58 
(PPh,),IdCO)I, 44 56 39 61 
[P(p-FC,H,II,Ir(COICIC1, 38 66 43 51 
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2.2. Effect of varying the donor iigands 

The donor ligands were varied on the iridium(I) 
complexes to determine whether the decomposition 
pathway adopted by the alkyl ligand would be influ- 
enced by their steric and electronic properties. On a 
simplistic level, the ability of a ligand to stabilize elec- 
tron density build up on the iridium should favor the 
transient carbene species formed by a-hydrogen elimi- 
nation [14,151. The ligands’ steric bulk should affect the 
general ease of decomposition, and could also influ- 
ence the conformation adopted by the octyl ligand, 
thereby dictating which hydrogens are accessible to the 
metal center. Of the three ligands examined, (PPh,, 
P(p-FC,H,), and CO), triphenylphosphine and its 
para-fluorophenyl derivative have essentially the same 
steric profile, while the fluorine-containing ligand is 
less electron donating. Carbon monoxide, in contrast, 
is a much smaller ligand and is also a strong r-acid. 

These differing properties of the donor ligands did 
affect the rate of formation and decomposition of the 
octyliridium complexes. However, the labeling patterns 
observed in the products consistently supported P-hy- 
drogen elimination as the only productive decomposi- 
tion pathway. Thus, altering the steric and electronic 
profiles of the donor ligands in this manner was insuffi- 
cient to induce a-hydrogen elimination as the produc- 
tive decomposition course. 

2.3. Effect of the iridium oxidation state 

Iridium(II1) complexes, L,Ir(CO)Cl,, containing the 
donor ligands PPh, and P(p-FPh), (L) were synthe- 
sized to compare the effect of oxidation state on the 
decomposition pathway of the alkyl complexes. The 
previously reported example of a-elimination occurred 
in an iridium(II1) complex containing P(p-FC,H,) and 
(q2-0,CCFJ ligands [51. Thus it was thought that the 
higher metal oxidation state, coupled with the fluori- 
nated ligands, may have stabilized the carbene inter- 
mediate formed via a-hydrogen elimination as already 
discussed. Once again, no discernible effect on the fate 
of the deuterium label in the products was observed, 
indicating that P-hydrogen elimination occurred re- 
gardless of the iridium oxidation state. The coordina- 
tively saturated iridium(II1) complexes reacted more 
slowly than the iridium(I) complexes and no evidence 
for reduction of the iridium(II1) to iridium(I) was ob- 
served prior to decomposition. 

2.4. Conclzuions 

Products arising exclusively from p-hydrogen elimi- 
nation were obtained from the thermal decomposition 
of a series of deuterium labeled n-octyliridium com- 

plexes. The non-alkyl ligands on the iridium were var- 
ied to provide complexes with a range of steric and 
electronic properties, however, these changes had no 
apparent effect on the identity of the decomposition 
products. All the labeled products obtained indicated 
that decomposition proceeded via a P-hydrogen elimi- 
nation pathway, although the presence of non-produc- 
tive a-hydrogen elimination equilibria can not be ruled 
out. These results are in accord with the P-hydrogen 
elimination observed by Schwartz for the parent com- 
pound (CH,(CH,),CD,CH,)Ir(COXPPh,),; changing 
the donor ligands on the iridium did not alter the 
course of the decomposition. It has been suggested 
that substituents attached directly to the alkyl ligand 
have a greater impact on the nature and stabilization 
of the desired carbene complexes 1161, therefore subse- 
quent studies will focus on modifications of this type. 

3. Experimental section 

Tris(p-fluorophenyljphosphine, (PPh,),IrCl(CO), 
(PPh,),Irl(CO), IrCl, * nH,O, [IrCl(CO),]n, and 
[(cod)IrCl], 1171 were obtained from Strem Chemi- 
cals. IrCl, * 2H,O was purchased from Aldrich. Dieth- 
yl ether and tetrahydrofuran (THF) were distilled 
from sodium-benzophenone ketyl. I-Bromo-lJ-dide- 
uteriooctane 181, l-bromo-2,2_dideuteriooctane 191, 
(PPh,),IrCl,(CO) [181, (PPh,),IrI,(CO) 1191, (P(p-F- 
C,H,),),IrCl(CO) 1201, and (P(p-FCgH5)3),IrCl,(CO) 
[21], were synthesized by literature methods. Other 
reagents and solvents were purchased from commercial 
sources and used as received. All reactions were car- 
ried out under argon. 

Mass spectral analyses were performed on a Hewlett 
Packard MSD GC/MS with a 30 m X 0.25 mm SE 30 
capillary column. NMR spectra were obtained in CDCl, 
or Ccl, at 25°C on a Bruker AC300 spectrometer. 

3. I. Preparation of 1, I-Dideuteriooctyllithium (101 

A solution containing 123 ~1 1-bromo-l,l-dide- 
uteriooctane (0.70 mmol) and 25 mg lithium (3.6 mmol) 
in 1 ml diethyl ether was stirred under Ar at 0°C for 2 
h. The resulting solution was cannulated away from 
any unreacted lithium and the octyllithium was dried 
under vacuum to remove octane and octene byprod- 
ucts. Readdition of 1 ml diethyl ether resulted in a 
clear solution which was kept at 0°C and used immedi- 
ately without further purification. Sample octyllithium 
solutions were monitored over the course of 24 h, but 
no further formation of olefinic byproducts was ob- 
served. Introduction of atmospheric water to the octyl- 
lithium resulted only in octane formation. 
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3.2. General procedure for the synthesis and decomposi- 
tion of octyliridium complexes [l] 

Freshly prepared l,l-dideuteriooctylhthium in di- 
ethyl ether was cannulated into a suspension of the 
iridium complex (0.035 mmol) in 1.0 ml diethyl ether at 
0°C. A solution formed immediately. The resulting 
octyliridium complex was warmed to room temperature 
and allowed to decompose. After 0.1-2 h the volatile 
products were collected under vacuum and were ana- 
lyzed by GC/MS and ‘H and 2H NMR spectroscopy. 
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